# $L^{1}$-Approximation of Meromorphic Functions 

Edgar Reich*<br>School of Mathematics, University of Minnesota, Minneapolis, Minnesota 55455<br>Communicated by Oved Shisha

Received July 13, 1979

## 1

Let $S=\left\{z_{k}\right\}$ be a countably infinite set in the complex plane $\mathbb{C}$ possessing no limit points in $\mathbb{C}$. Let $\mathfrak{B}$ be the collection of functions, $f(z)$, analytic in $C \backslash S$, possessing finite $L^{1}$ norm,

$$
\begin{equation*}
\|f\|=\iint_{C}|f(z)| d x d y<\infty \tag{1.1}
\end{equation*}
$$

If $a \in S$ and $0<|z-a|<\frac{1}{2} \min _{b \in S}|a-b|$, then the mean-value property of analytic functions shows that, for any $f \in \mathfrak{B}$,

$$
f(z)=\frac{1}{\pi|z-a|^{2}} \iint_{|\zeta-z| \leqslant|z-a|} f(\zeta) d \xi d \eta
$$

Hence,

$$
|f(z)| \leqslant \frac{\|f\|}{\pi|z-a|^{2}} .
$$

From this estimate and (1.1), we conclude that $f$ is meromorphic in $\mathbb{C}$, and that the singularities of $f$ are at worst first-order poles at the points of $S$.

It follows from very general criteria of Bers [1,2] that every function of the class $\mathfrak{B}$ can be approximated arbitrarily well in the $L^{1}$ norm by rational functions, $f_{n}(z)$. Bers' method makes use of Banach space theory, and distributional derivatives of singular integrals. Due to its general nature, it provides an existence theorem for the approximating sequence $\left\{f_{n}\right\}$, but not an explicit construction. By means of very elementary methods, we will see,

[^0]below, how the sequence, $f_{n}$, can be obtained in a concrete manner in the case under discussion here.

For the construction of $f_{n}, n=1,2, \ldots$, we proceed as follows. Assume that $\left|z_{k+1}\right| \geqslant\left|z_{k}\right|$, for all $z_{k} \in S$, and let

$$
\begin{equation*}
F(r)=\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|f\left(r e^{i \theta}\right)\right| r d \theta \tag{1.2}
\end{equation*}
$$

In view of (1.1), $F(r)$ exists for almost all $r>0$, and

$$
\|f\|=2 \pi \int_{0}^{\infty} F(r) d r<\infty
$$

Therefore, we may choose a sequence $\left\{r_{n}\right\}, \lim r_{n}=\infty$,

$$
\begin{equation*}
\max \left(2,\left|z_{2}\right|\right)<r_{1}<r_{2}<\cdots, \tag{1.3}
\end{equation*}
$$

with $r_{n} \neq\left|z_{k}\right|,\left(z_{k} \in S\right)$, and such that

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left(r_{n} \log r_{n}\right) F\left(r_{n}\right)=0 \tag{1.4}
\end{equation*}
$$

Let $\lambda_{k}$ denote the residue of $f$ at $z_{k}$. We define $f_{n}(z)$ as

$$
\begin{equation*}
f_{n}(z)=\sum_{\left|z_{k}\right|<r_{n}} \frac{\lambda_{k}}{z-z_{k}}+\frac{\alpha_{n}}{z-z_{1}}+\frac{\beta_{n}}{z-z_{2}} \tag{1.5}
\end{equation*}
$$

where $\alpha_{n}, \beta_{n}$ are determined by the requirement that $z^{2} f_{n}(z) \rightarrow 0$, as $z \rightarrow \infty$; namely, that

$$
\begin{align*}
\sum_{\left|z_{k}\right|<r_{n}} \lambda_{k}+\alpha_{n}+\beta_{n} & =0  \tag{1.6}\\
\sum_{\left|z_{k}\right|<r_{n}} z_{k} \lambda_{k}+z_{1} \alpha_{n}+z_{2} \beta_{n} & =0 .
\end{align*}
$$

Theorem. Given $f \in \mathfrak{B}$, let $f_{n}, n=1,2, \ldots$, be chosen as in (1.5). Then

$$
\lim _{n \rightarrow \infty}\left\|f-f_{n}\right\|=0
$$

Furthermore, $\lim f_{n}(z)=f(z)$, uniformly in every compact subset of $\mathbb{C} \backslash\left\{z_{1}, z_{2}\right\}$.

2

We proceed with the proof.
Let

$$
g_{n}(z)=\sum_{\left|z_{k}\right|<r_{n}} \frac{\lambda_{k}}{z-z_{k}}, \quad h_{n}(z)=-\frac{\alpha_{n}}{z-z_{1}}-\frac{\beta_{n}}{z-z_{2}},
$$

and

$$
\begin{aligned}
& A_{n}=\frac{1}{2 \pi i} \int_{|\zeta|=r_{n}} f(\zeta) d \zeta=\sum_{\left|z_{k}\right|<r_{n}} \lambda_{k}, \\
& B_{n}=\frac{1}{2 \pi i} \int_{|\zeta|=r_{n}} \zeta f(\zeta) d \zeta=\sum_{\left|z_{k}\right|<r_{n}} z_{k} \lambda_{k}
\end{aligned}
$$

As is easily verified,

$$
\begin{align*}
g_{n}(z) & =f(z)+\frac{1}{2 \pi i} \int_{|\zeta|=r_{n}} \frac{f(\zeta)}{z-\zeta} d \zeta, & & |z|<r_{n}, z \neq z_{k}  \tag{2.1}\\
& =\frac{1}{2 \pi i} \int_{|\zeta|=r_{n}} \frac{f(\zeta)}{z-\zeta} d \zeta, & & |z|>r_{n}
\end{align*}
$$

Thus,

$$
\begin{equation*}
\left|g_{n}(z)-f(z)\right| \leqslant \frac{F\left(r_{n}\right)}{r_{n}-|z|}, \quad|z|<r_{n} \tag{2.2}
\end{equation*}
$$

This shows that $g_{n}(z) \rightarrow f(z)$, uniformly in every compact subset of $\mathbb{C}$.
Solving (1.6) for $\alpha_{n}, \beta_{n}$ in terms of $A_{n}, B_{n}$, yields the formulas

$$
\begin{align*}
h_{n}(z) & =\left(\frac{A_{n} z_{2}-B_{n}}{z_{2}-z_{1}}\right) \frac{1}{z-z_{1}}+\left(\frac{B_{n}-A_{n} z_{1}}{z_{2}-z_{1}}\right) \frac{1}{z-z_{2}} \\
& =\frac{1}{2 \pi i} \int_{|\zeta|=r_{n}} \frac{\zeta+z-\left(z_{1}+z_{2}\right)}{\left(z-z_{1}\right)\left(z-z_{2}\right)} f(\zeta) d \zeta . \tag{2.3}
\end{align*}
$$

Since

$$
\left|A_{n}\right| \leqslant F\left(r_{n}\right), \quad\left|B_{n}\right| \leqslant r_{n} F\left(r_{n}\right)
$$

we see right away, from the first expression in (2.3) that

$$
\lim _{n \rightarrow \infty} h_{n}(z)=0
$$

uniformly in every compact subset of $\mathbb{C} \backslash\left\{z_{1}, z_{2}\right\}$. Hence the assertion about $\lim f_{n}(z)$ is proved. To prove the main assertion of the theorem we must verify that the norms $\left\|f_{n}\right\|$ are bounded unifromly with respect to $n$. (The choice of $\alpha_{n}, \beta_{n}$ was made to ensure that $\left\|f_{n}\right\|<\infty$.)

We consider first the quantity

$$
\iint_{|z|<2 r_{n}}\left|f_{n}(z)\right| d x d y
$$

By (2.1),

$$
\begin{aligned}
\iint_{|z|<2 r_{n}}\left|g_{n}(z)\right| d x d y \leqslant & \iint_{|z|<r_{n}}|f(z)| d x d y \\
& +\frac{1}{2 \pi} \int_{\left|\left|| |=r_{n}\right.\right.}|f(\zeta)| \cdot|d \zeta| \iint_{|z|<2 r_{n}} \frac{d x d y}{|z-\zeta|} \\
\leqslant & \|f\|+\frac{1}{2 \pi} \int_{|\zeta|=r_{n}}|f(\zeta)| \cdot|d \zeta| \iint_{|z|<3 r_{n}} \frac{d x d y}{|z|} \\
= & \|f\|+6 \pi r_{n} F\left(r_{n}\right)
\end{aligned}
$$

On the other hand, using the second expression for $h_{n}(z)$, in (2.3),

$$
\begin{aligned}
\left|h_{n}(z)\right| & \leqslant \frac{r_{n}+|z|+\left|z_{1}+z_{2}\right|}{\left|z-z_{1}\right| \cdot\left|z-z_{2}\right|} F\left(r_{n}\right) \\
& \leqslant \frac{5 r_{n} F\left(r_{n}\right)}{\left|z-z_{1}\right| \cdot\left|z-z_{2}\right|}, \quad\left(|z|<2 r_{n}\right)
\end{aligned}
$$

Therefore,

$$
\iint_{|z|<2 r_{n}}\left|h_{n}(z)\right| d x d y=O\left[\left(r_{n} \log r_{n}\right) F\left(r_{n}\right)\right], \quad n \rightarrow \infty
$$

Hence,

$$
\begin{equation*}
\iint_{|z|<2 r_{n}}\left|f_{n}(z)\right| d x d y \leqslant\|f\|+O\left[\left(r_{n} \log r_{n}\right) F\left(r_{n}\right)\right], \quad n \rightarrow \infty \tag{2.4}
\end{equation*}
$$

In order to estimate $\iint_{|z|>2 r_{n}}\left|f_{n}(z)\right| d x d y$ we combine the second expression for $g_{n}(z)$ of (2.1) with the second expression for $h_{n}(z)$ of (2.3). The coefficient of $f(\zeta)$ in the resulting combined integrand is

$$
\frac{1}{z-\zeta}+\frac{\left(z_{1}+z_{2}\right)-(\zeta+z)}{\left(z-z_{1}\right)\left(z-z_{2}\right)}=\frac{\zeta^{2}}{(z-\zeta) z^{2}}+\frac{z_{1} z_{2}(z+\zeta)-\left(z_{1}+z_{2}\right) \zeta z}{\left(z-z_{1}\right)\left(z-z_{2}\right) z^{2}}
$$

Thus, for $|z|>r_{n}$,

$$
\begin{aligned}
\left|f_{n}(z)\right| \leqslant & \frac{1}{2 \pi|z|^{2}} \int_{|\zeta|=r_{n}}\left|\frac{\zeta^{2}}{z-\zeta}+\frac{z_{1} z_{2}(z+\zeta)-\left(z_{1}+z_{2}\right) \zeta z}{\left(z-z_{1}\right)\left(z-z_{2}\right)}\right| \\
& \cdot|f(\zeta)| \cdot|d \zeta| \\
\leqslant & \frac{1}{|z|^{2}}\left[\frac{r_{n}^{2}}{|z|-r_{n}}+\frac{\left|z_{1} z_{2}\right|\left(|z|+r_{n}\right)+\left|z_{1}+z_{2}\right| r_{n}|z|}{\left|z-z_{1}\right| \cdot\left|z-z_{2}\right|}\right] F\left(r_{n}\right),
\end{aligned}
$$

whence

$$
\begin{equation*}
\iint_{|z|>2 r_{n}}\left|f_{n}(z)\right| d x d y=O\left[r_{n} F\left(r_{n}\right)\right], \quad \text { as } \quad n \rightarrow \infty \tag{2.5}
\end{equation*}
$$

Together, (2.4) and (2.5) imply that

$$
\left\|f_{n}\right\| \leqslant\|f\|+O\left[\left(r_{n} \log r_{n}\right) F\left(r_{n}\right)\right], \quad n \rightarrow \infty
$$

In view of (1.4), therefore, we conclude that $\left\|f_{n}\right\|$ is bounded independently of $n$.

## References

1. Lipman Bers, An approximation theorem, J. Analyse Math. 14 (1965), 1-4.
2. Lipman Bers, $L_{1}$ approximation of analytic functions, J. Indian Math. Soc. 34 (1970), 193-201.

[^0]:    * Work done with support of the Forschungsinstitut für Mathematik, E. T. H., Zürich, and the National Science Foundation, USA.

