L¹-Approximation of Meromorphic Functions

EDGAR REICH*

School of Mathematics, University of Minnesota, Minneapolis, Minnesota 55455

Communicated by Oved Shisha

Received July 13, 1979

1

Let $S = \{z_k\}$ be a countably infinite set in the complex plane \mathbb{C} possessing no limit points in \mathbb{C} . Let \mathfrak{B} be the collection of functions, f(z), analytic in $\mathbb{C}\setminus S$, possessing finite L^1 norm,

$$||f|| = \iint_{\mathbb{C}} |f(z)| \, dx \, dy < \infty. \tag{1.1}$$

If $a \in S$ and $0 < |z - a| < \frac{1}{2} \min_{b \in S} |a - b|$, then the mean-value property of analytic functions shows that, for any $f \in \mathfrak{B}$,

$$f(z) = \frac{1}{\pi |z-a|^2} \iint_{|\zeta-z| \leq |z-a|} f(\zeta) d\xi d\eta.$$

Hence,

$$|f(z)| \leqslant \frac{\|f\|}{\pi |z-a|^2}.$$

From this estimate and (1.1), we conclude that f is meromorphic in \mathbb{C} , and that the singularities of f are at worst *first*-order poles at the points of S.

It follows from very general criteria of Bers [1, 2] that every function of the class \mathfrak{B} can be approximated arbitrarily well in the L^1 norm by *rational* functions, $f_n(z)$. Bers' method makes use of Banach space theory, and distributional derivatives of singular integrals. Due to its general nature, it provides an existence theorem for the approximating sequence $\{f_n\}$, but not an explicit construction. By means of very elementary methods, we will see,

^{*} Work done with support of the Forschungsinstitut für Mathematik, E. T. H., Zürich, and the National Science Foundation, USA.

EDGAR REICH

below, how the sequence, f_n , can be obtained in a concrete manner in the case under discussion here.

For the construction of f_n , n = 1, 2,..., we proceed as follows. Assume that $|z_{k+1}| \ge |z_k|$, for all $z_k \in S$, and let

$$F(r) = \frac{1}{2\pi} \int_0^{2\pi} |f(re^{i\theta})| \, r \, d\theta.$$
 (1.2)

In view of (1.1), F(r) exists for almost all r > 0, and

$$\|f\|=2\pi\int_0^\infty F(r)\,dr<\infty.$$

Therefore, we may choose a sequence $\{r_n\}$, $\lim r_n = \infty$,

$$\max(2, |z_2|) < r_1 < r_2 < \cdots,$$
 (1.3)

with $r_n \neq |z_k|$, $(z_k \in S)$, and such that

$$\lim_{n \to \infty} (r_n \log r_n) F(r_n) = 0.$$
(1.4)

Let λ_k denote the residue of f at z_k . We define $f_n(z)$ as

$$f_n(z) = \sum_{|z_k| < r_n} \frac{\lambda_k}{z - z_k} + \frac{\alpha_n}{z - z_1} + \frac{\beta_n}{z - z_2},$$
 (1.5)

where α_n , β_n are determined by the requirement that $z^2 f_n(z) \to 0$, as $z \to \infty$; namely, that

$$\sum_{\substack{|z_k| < r_n}} \lambda_k + \alpha_n + \beta_n = 0,$$

$$\sum_{\substack{|z_k| < r_n}} z_k \lambda_k + z_1 \alpha_n + z_2 \beta_n = 0.$$
(1.6)

THEOREM. Given $f \in \mathfrak{B}$, let f_n , n = 1, 2, ..., be chosen as in (1.5). Then

$$\lim_{n\to\infty} \|f-f_n\|=0.$$

Furthermore, $\lim f_n(z) = f(z)$, uniformly in every compact subset of $\mathbb{C} \setminus \{z_1, z_2\}$.

We proceed with the proof. Let

$$g_n(z) = \sum_{|z_k| < r_n} \frac{\lambda_k}{z - z_k}, \qquad h_n(z) = -\frac{\alpha_n}{z - z_1} - \frac{\beta_n}{z - z_2},$$

and

$$A_n = \frac{1}{2\pi i} \int_{|\zeta| = r_n} f(\zeta) \, d\zeta = \sum_{|z_k| < r_n} \lambda_k,$$
$$B_n = \frac{1}{2\pi i} \int_{|\zeta| = r_n} \zeta f(\zeta) \, d\zeta = \sum_{|z_k| < r_n} z_k \lambda_k.$$

As is easily verified,

$$g_n(z) = f(z) + \frac{1}{2\pi i} \int_{|\zeta| = r_n} \frac{f(\zeta)}{z - \zeta} d\zeta, \qquad |z| < r_n, z \neq z_k$$

$$= \frac{1}{2\pi i} \int_{|\zeta| = r_n} \frac{f(\zeta)}{z - \zeta} d\zeta, \qquad |z| > r_n$$
(2.1)

Thus,

$$|g_n(z) - f(z)| \leq \frac{F(r_n)}{r_n - |z|}, \qquad |z| < r_n.$$
 (2.2)

This shows that $g_n(z) \to f(z)$, uniformly in every compact subset of \mathbb{C} . Solving (1.6) for α_n, β_n in terms of A_n, B_n , yields the formulas

$$h_n(z) = \left(\frac{A_n z_2 - B_n}{z_2 - z_1}\right) \frac{1}{z - z_1} + \left(\frac{B_n - A_n z_1}{z_2 - z_1}\right) \frac{1}{z - z_2}$$
$$= \frac{1}{2\pi i} \int_{|\zeta| = r_n} \frac{\zeta + z - (z_1 + z_2)}{(z - z_1)(z - z_2)} f(\zeta) \, d\zeta.$$
(2.3)

Since

$$|A_n| \leq F(r_n), \qquad |B_n| \leq r_n F(r_n),$$

we see right away, from the first expression in (2.3) that

$$\lim_{n\to\infty}h_n(z)=0,$$

EDGAR REICH

uniformly in every compact subset of $\mathbb{C}\setminus\{z_1, z_2\}$. Hence the assertion about $\lim f_n(z)$ is proved. To prove the main assertion of the theorem we must verify that the norms $||f_n||$ are bounded uniformly with respect to *n*. (The choice of α_n , β_n was made to ensure that $||f_n|| < \infty$.)

We consider first the quantity

$$\iint_{|z|<2r_n} |f_n(z)| \, dx \, dy.$$

By (2.1),

$$\begin{split} \iint_{|z|<2r_n} |g_n(z)| \, dx \, dy &\leq \iint_{|z|$$

On the other hand, using the second expression for $h_n(z)$, in (2.3),

$$|h_n(z)| \leq \frac{r_n + |z| + |z_1 + z_2|}{|z - z_1| \cdot |z - z_2|} F(r_n)$$

$$\leq \frac{5r_n F(r_n)}{|z - z_1| \cdot |z - z_2|}, \qquad (|z| < 2r_n).$$

Therefore,

$$\iint_{|z|<2r_n} |h_n(z)| \, dx \, dy = O[(r_n \log r_n) F(r_n)], \qquad n \to \infty$$

Hence,

$$\iint_{|z| < 2r_n} |f_n(z)| \, dx \, dy \leq ||f|| + O[(r_n \log r_n) F(r_n)], \qquad n \to \infty.$$
 (2.4)

In order to estimate $\iint_{|z|>2r_n} |f_n(z)| dx dy$ we combine the second expression for $g_n(z)$ of (2.1) with the second expression for $h_n(z)$ of (2.3). The coefficient of $f(\zeta)$ in the resulting combined integrand is

$$\frac{1}{z-\zeta} + \frac{(z_1+z_2)-(\zeta+z)}{(z-z_1)(z-z_2)} = \frac{\zeta^2}{(z-\zeta)z^2} + \frac{z_1z_2(z+\zeta)-(z_1+z_2)\,\zeta z}{(z-z_1)(z-z_2)z^2}.$$

Thus, for $|z| > r_n$,

$$\begin{split} |f_n(z)| &\leq \frac{1}{2\pi |z|^2} \int_{|\zeta|=r_n} \left| \frac{\zeta^2}{z-\zeta} + \frac{z_1 z_2 (z+\zeta) - (z_1+z_2) \zeta z}{(z-z_1)(z-z_2)} \right| \\ & \cdot |f(\zeta)| \cdot |d\zeta| \\ & \leq \frac{1}{|z|^2} \left[\frac{r_n^2}{|z|-r_n} + \frac{|z_1 z_2| (|z|+r_n) + |z_1+z_2| r_n |z|}{|z-z_1| \cdot |z-z_2|} \right] F(r_n), \end{split}$$

whence

$$\iint_{|z|>2r_n} |f_n(z)| \, dx \, dy = O[r_n F(r_n)], \qquad \text{as} \quad n \to \infty.$$
(2.5)

Together, (2.4) and (2.5) imply that

$$||f_n|| \leq ||f|| + O[(r_n \log r_n) F(r_n)], \qquad n \to \infty.$$

In view of (1.4), therefore, we conclude that $||f_n||$ is bounded independently of n.

References

- 1. LIPMAN BERS, An approximation theorem, J. Analyse Math. 14 (1965), 1-4.
- 2. LIPMAN BERS, L₁ approximation of analytic functions, J. Indian Math. Soc. 34 (1970), 193-201.